Effects of subacute ruminal acidosis and low feed intake on short-chain fatty acid transporters and flux pathways in Holstein steers.

نویسندگان

  • A H Laarman
  • R-L A Pederzolli
  • K M Wood
  • G B Penner
  • B W McBride
چکیده

The objective of this study was to investigate the role of protein-mediated transport pathways for short-chain fatty acid flux across the ruminal epithelium, using subacute ruminal acidosis (SARA) and feed restriction as models. Twenty-one Holstein steers (216.8 ± 31.4 kg BW) were individually housed and fed a total mixed ration (TMR) with a 50:50 forage:concentrate ad libitum for 5 d. After the 5 d diet adjustment period, calves were assigned 1 of 3 treatments: control (CTRL) calves were fed the TMR ad libitum on d 1, subacute ruminal acidosis calves were given 25% of their ad libitum DMI on d 1 and then given a barley grain challenge at 30% of ad libitum DMI on d2 (ACID) calves were given 25% of their ad libitum DMI on d 1 and then given a barley grain challenge at 30% of ad libitum DMI on d 2, and feed restriction (FR) calves were given 25% of their ad libitum DMI for 5 d. Reticuloruminal pH was continuously measured during the entire study. At the end of the study, rumen tissue was harvested and acetate and butyrate flux were measured. Selective inhibitors were used to differentiate total flux (TOTAL), protein-mediated flux (PMF), and passive diffusion flux (PDF). The duration that rumen pH was <5.6 was greater in ACID calves compared with CTRL and FR calves (57 ± 90 vs. 519.71 ± 90 vs. 30 ± 90 min/d for CTRL, ACID, and FR, respectively; < 0.01). Total acetate flux was greater in FR than in CTRL (630.6 ± 38.9 vs. 421.1 ± 41.4 nmol/cm × h, respectively; < 0.01), but no difference was observed between CTRL and ACID (421.1 ± 41.4 vs. 455.4 ± 38.9 nmol/cm × h, respectively). Also, total butyrate flux was greater in FR than in CTRL (1,241.9 ± 94.8 vs. 625.5 ± 86.3 nmol/cm × h, respectively; < 0.01), but no difference was detected between CTRL and ACID (625.5 ± 86.3 vs. 716.7 ± 81.0 nmol/cm × h, respectively). For butyrate flux, PMF was greater for FR than for CTRL (479.21 ± 103.9 vs. 99.9 ± 86.3 nmol/cm × h, respectively; < 0.01), but no difference was observed between the CTRL and ACID treatments (99.9 ± 86.3 vs. 90.2 ± 81.0 nmol/cm × h, respectively). Immunofluorescence analysis showed an increase in monocarboxylate cotransporter isoform 1 abundance in the FR treatment compared with the ACID treatment (9,250 ± 1,648 vs. 4,187 ± 1,537 arbitrary units, respectively; = 0.03) but not compared with the CTRL treatment (9,250 ± 1,648 vs. 7,241 ± 1,648 arbitrary units, respectively; = 0.15). These data identify a short-term adaptive response of the ruminal epithelium to dietary changes that involves PMF and PDF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptomic Changes in the Rumen Epithelium of Cattle after the Induction of Acidosis

The transition from normal forage to a highly fermentable diet to achieve rapid weight gain in the cattle industry can induce ruminal acidosis. The molecular host mechanisms that occur in acidosis are largely unknown. Therefore, the histology and transcriptome profiling of rumen epithelium was investigated in normal and acidosis animals to understand the molecular mechanisms involved in the dis...

متن کامل

Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers.

We used six ruminally cannulated steers in a two-period crossover design to study ruminal fermentative and microbial changes associated with induced subacute acidosis. Steers were adapted to either an 80% alfalfa hay (hay-adapted)- or corn grain (grain-adapted)-based concentrate diet. After feed was withheld for 24 h, steers were overfed with an all-grain diet at 3.5 x NEm daily for 3 d. Rumina...

متن کامل

Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook.

Ruminal acidosis continues to be a common ruminal digestive disorder in beef cattle and can lead to marked reductions in cattle performance. Ruminal acidosis or increased accumulation of organic acids in the rumen reflects imbalance between microbial production, microbial utilization, and ruminal absorption of organic acids. The severity of acidosis, generally related to the amount, frequency, ...

متن کامل

Interaction effect of starter physical form and alfalfa hay on growth performance, ruminal fermentation, and blood metabolites in Holstein calves

The present study was conducted to evaluate the effects of physical form of starter and alfalfa hay (AH) provision on growth performance, ruminal fermentation, and blood metabolites of Holstein dairy calves. Forty-four 3d-old Holstein dairy calves with a mean starting BW of 39.9 ± 1.1 kg were used in a 2 × 2 factorial arrangement. The factors were dietary forage level (0 or 150 g kg-1</sup...

متن کامل

Influence of malic acid supplementation on ruminal pH, lactic acid utilization, and digestive function in steers fed high-concentrate finishing diets.

Two trials were conducted to evaluate the influence of malic acid supplementation on ruminal fermentation. In Trial 1, six Holstein steers (300 kg) with ruminal cannulas were used in a crossover design experiment to study the influence of malic acid (MA) on ruminal metabolism during glucose-induced lactic acidosis. Treatments consisted of a 77% steam-flaked barley-based finishing diet supplemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of animal science

دوره 94 9  شماره 

صفحات  -

تاریخ انتشار 2016